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: ABSTRACT L

. A low Mach number formulation of the three-dimensional Navier-Stokes . .
equations is solved for a steady laminar horseshoe vortex flow, using a !

; time-iterative approach. A split linearized block implicit algorithm is

i used, with central spatial differences in a transformed coordinate system.

The stability of this algorithm in three dimensions is examined for a scalar -. 4

convection model problem, and results are obtained which suggest that the

algorithm is both conditionally stable and rapidly coavergent when :

nonperiodic inflow/outflow boundary conditions are used. A new form of i:vj

artificial dissipation which acts along physical streamlines instead of e

coordinate grid lines is also tested and found to introduce less error when

the local flow direction is not aligned with the computational grid. An )

accurate solution for a laminar horseshoe vortex flow is computed using an j

improved solution algorithm with small artificial dissipation. This solution L

does not change significantly when the mesh spacing is halved using

(15 x 15 x 15) and (29 x 29 x 29) grids. Very good convergence rates were

obtained, such that residuals were reduced by a factor of 10-2 in 30 and 60

- iterations respectively, for 3,375 and 24,389 pgrid poiats. . L
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INTRODUCTION

The horseshoe-vortex and associated corner flows which occur when a
blunt obstruction is placed within an approaching boundary layer represent a
fundamental three-dimensional viscous flow of considerable interest and
importance. Examples of this type of flow include the flows near an aircraft
wing/fuselage junction and near a submarine hull/sail junction. The feature
common to all horseshoe (or necklace) vortex flows is that a non-uniform
velocity is an approaching boundary layer meets a local region of adverse
pressure gradient due to the blockage effect of the obstruction. This causes
a three~dimensional boundary layer separation and the formation of one or
more horseshoe vortices around the obstruction. In addition to the leading
edge region, the associated corner flows downstream of the leading edge are
also of interest, since they contain streamwise vortices which affect the
performance of both the airfoil or strut and also other devices located
downstream.

The problem of horseshoe-vortex/corner flow has been investigated
previously [1-2] by numerical solution of the Navier-Stokes equations.
Solutions for laminar flow past an elliptical leading edge mounted normal to
a flat plate endwall have been computed for both zero and five-degree angles
of incidence, with chordal Reynolds number of 400, and Mach number of 0.2.
Turbulent flow cases have been computed for both unswept and 45-degree swept
elliptical leadiag edges mounted on a flat plate, with Reynolds number of
310,000 and Mach number of 0.05. Results from these flow calculations have
been reported by Briley and McDonald [1-2}. Calculations for a blunt-fin
induced shock wave and boundary-layer interaction flow containing a horseshoe
vortex have been reported by Hung and Kordulla [3]. Detailed experimental
measurements for incompressible turbulent horseshoe vortex flows have been
obtained recently by McMahon, Hubbartt and Kubendran [4] and by Moore and
Forlini [5].

A major impediment to the study of this and other three-dimensional
flows by solution of the Navier-Stokes equations has been the high cost
(computer run time) of computing accurate solutions. The high cost is
attributable to the large number of grid points inherent in three dimensions

and to a loss in convergence rate associated with the use of locally refined

~ - PR N . e e o - y LT . N
AP P ) [l TR THDN VN, W) 2 [N n a PO G Rp L I e UL L

Ay

TR Py

s

duomall

DR 4
A2 a_od




PN "

vy
T

T
'
e

(R i N

RO

A EaJRah o n o S0 o0 v T
- TS Tal

S—— . -y - Mg Same A e e et
Ul SO P addE s e LA i e et N arRE I D) AU s ARl e e P A Pl . B .

(noauniform) grids which are necessary to define the multiple length scales
present in high Reynolds number viscous flows. Another difficulty is that
accuracy can be degraded by the use of artificial dissipation terms which are
added to central difference approximations for convective terms. Attempts to
reduce this source of error by using small amounts of dissipation have led to
iastability in three dimensions using the present algorithm. The present
investigation was undertaken to acquire an improved understanding of the
stability and accuracy of the three-dimensional ADI scheme for a scalar
convection model problem, which would lead to improvements in accuracy and
efficiency of the solution algorithm for the Navier-Stokes equations.

In the present report, the methods used in solving the three-dimemsional
Navier-Stokes equations for horseshoe vortex flows are first reviewed. The
questions of stability and error due to artificial dissipation are then
examined for scalar convection in three dimensions. Finally, solutions for a
laninar horseshoe vortex flow are computed using an improved algorithm with

reduced dissipation.

GOVERNING EQUATIONS

The three-dimensional compressible Navier-Stokes equations are solved
here for low Mach number and with an assumption of constant stagnation
enthalpy. For these conditions, steady flow solutions closely approximate an
incompressible constant density flow (cf. Briley, McDonald and
Shamroth [6]). A zonal approach is used wherein the flow is computed only in
a subregion of the overall flow field, near the leading edge (Fig. 1). The
form of the governing equations solved permits the use of general
nonorthogonal body-fitted coordinate systems, and is obtained by a
transformation from Cartesian to general nonorthogonal coordinates. The
Cartesian velocity components uj and density p are retained as dependent
variables in the transformed system of equations. The pressure, temperature
and stagnation enthalpy are denoted p, T and h,, respectively.

All variables are nondimensional in the present formulation, having been
normalized by reference quantities denoted by a subscript 'r'. The
quantities pp, Uy, Ty amd L, denote reference values for density,

velocity, temperature and length, respectively. The reference pressure,
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enthalpy and time are taken as DrUrz, cpTr and L /Up, respectively,
where cp is the specific heat at constant pressure. The specific heat
ratio is Y, and My = U./c, is a reference Mach number, where ¢, is
the reference sound speed defined by cr2 = YRT,, and R is the gas
constant. The reference Reynolds number Re is defined by p U.L. /M.,
where U, is a reference viscosity.

The transformation T from Cartesian coordinates xj to computational

coordinates yj is given by

T =y (x)) 1,3 = 1,2,3 (1

Spatial derivatives are transformed according to

3 b 3 (2)

where unless otherwise stated the summation convention is used for repeated

indices, and yJi £ ByJ/Bxi. The coordinate system is defined by specifying

the Cartesian coordinates of each computational grid point. The partial
derivatives 3xi/8yj of the inverse transformation ’I'-1 = xi(yJ) are then
computed using three-point second-order difference formulas with uniform
spacing of the computational coordinates yj. For convenience, the yj
coordinates are normalized to give a unit mesh spacing ij = 1 for each
coordinate. The transformation derivatives ayj/axi are then computed
from axi/ayj using standard procedures for computing derivacives of
inverse functions (cf. Kaplan [7]).

The transformed Navier-Stokes equations can be written in the following

nondimensional form: The continuity equation is

Ly yd —37 pu, = 0 (3)
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The kth component of the momentum equation is given by

2% 2w 4 Gp -ty = 0 @)
at o3 kT TP T T

where §j, is the Kronecker delta function. The shear stress Tjix is given

by
(5)

The equation of state and definition of stagnation enthalpy can be expressed

for a perfect gas as

p = or/mﬁ (6)

2 2
h = T/(y-DM_" + q°/2 (7)

where q2 = 6lJuin. Although it is not necessary, it is both convenient
and computationally worthwhile for the present problem to assume that hy is
a constant and to omit solution of the energy equation. This results in
negligible error for steady flow at low Mach number with no heat addition.

Equations (6) and (7) can then be combined to produce an adiabatic equation

of state
2
p=rlh -q7/2) -/ (8)

which is used to eliminate pressure as a dependent variable in Eq. (4&).
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METHOD OF SOLUTION

The basic algorithm considered here has been described by Briley and
McDonald [8, 9] and employs a formal time linearization to produce a
noniterative fully-coupled approximation for nonlinear systems of equations,
which is solved in block-implicit form using an ADI scheme with consistent
intermediate steps. For a linear scalar diffusion equation, this algorithm
reduces to a classical ADI scheme considered by Douglas and Gunn [10].
Warming and Beam [1]1, 12] have introduced a very concise derivation of this

same algorithm using approximate factorization of the linearized

approximation written in ‘'delta' form. The works of Pulliam and Steger [13],

Thomas and Lombard [l4] and Shamroth, McDonald and Briley [15] are
representative of numerous investigations which have employed this basic

algorithm.

Linearization and Time Differencing

The nonlinear system of governing equations is first writtem (at a

single grid point) in the following form:

H(s) /3t = D(¢) + S(¢) (9)

where ¢ is the column-vector of dependent variables, H and S are
column-vector algebraic functions of ¢, and D is a column vector whose

elements are the spatial differeatial operators which generate all spatial

derivatives appearing in the governing equation associated with that element.

The solution procedure is based on the following two-level implicit

time-difference approximation of (9):

n+l n+l +

(H - HMy/at = 8(D sy & (1-8) @™ + sM) (10)
where, for example, HO*l denotes H(¢™*!) and At = ¢n*tl ~ 0. The
parameter B (0.5 < 8 < 1) permits a variable time-centering of the scheme,

with a truncation error of order (Atz, (B - 1/2 at)].
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A local time linearization (Taylor expansion about ¢7) of requisite
formal accuracy is introduced, and this serves to defime a linear

differential operator L such that

p™ 1 o p® + 1® (6" - 4™ + 0 (atd) (11a)

Similarly,
. ® s Gr/ae)® (0" - 4™ + 0 (atd) (11b)
s o 5% 4 (as/30)® (™ - o™ + 0 (atD) (11¢)

Equations (lla-c) are inserted into Eq. (10) to obtain the following system

which is linear in ¢0*l

n+l _

(A - BAE L™ (¢ ¢™) = at (D" + s (12)

and which is termed a linearized block implicit (LBI) scheme. Hewe, A

denotes a square matrix defined by

A = (3H/3¢)" - BAt (3s/24)" (13)

Equation (12) has 0 (At) accuracy unless H = ¢, in which case the accuracy is

the same as Eq. (10).

Special Treatment of Diffusive Terms

Spatial cross-derivatives are present in viscous terms and in added
artificial dissipation terms of the present formulation, and these cross
derivative terms are evaluated explicitly at t0'. To preserve notational
simplicity, it is understood that all cross-derivative terms appearing in
L™ are neglected but are retained in D®. 1In addition, although diffusion
coefficients in viscous and dissipation terms are generally functions of the
dependent variables, these coefficients are not linearized and instead are
evaluated implicitly at t" during each time step. Notationally, this is

equivalent to neglecting derivatives of these coefficients with respect to ¢

6
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in L%, which are formally present in the Taylor expansion (l1la), but
otherwise retaining all terms in both LP and DR,

It is important to note that neglecting terms in L® has no effect on L

e

steady solutions of Eq. (12), since ¢7*1 - ¢7 = 0 and thus Eq. (12)

)
- ik hea aA s

reduces to the steady form of the equations: D7 + S% = 0. Aside from
stability considerations, the only effect of neglecting terms in L% is to

introduce an 0(At) truncation error. L4

Consistent Splitting of the LBI Scheme

To obtain an efficient algorithm, the linearized system (12) is split »
using ADI techniques. To obtain the split scheme, the multidimensional ]
operator L is rewritten as the sum of three '"one-dimensional" sub-operators

L; (i =1, 2, 3) each of which contains all terms having derivatives with

L
y
respect to the i-th spatial coordinate. The split form of Eq. (12) can be » )
derived either by following the procedure described by Douglas and Gunn in R
their generalization and unification of scalar ADI schemes, or using ._i
approximate factorization. In either case, for the present system of }
equations the split algorithm is given by !4;
* -
(A - BatLD) (¢ - 4™ = ¢ (" +s™ (14a) j
1
1
* % *
(A - BACLY) (6 - ¢™) = A (¢ - ¢ (14b) L
3 o 1
' (a - BacL)) (6" - 0™ = A (07 - 6D (14c)
2 -
[ i
[ .
! where ¢* and ¢** are consistent intermediate solutions. If spatial !‘1
{ derivatives appearing in L; and D are replaced by three-point difference §
[ formulas, then each step in Eqs. (l4a-c) can be solved by a block-tridiagonal
. elimination. }
| Combining Eqs. (li4a-c) gives 4 4
' ]
- - + :
5 (A - BatL]) A 1 (a - BAtL;) AL (a - Bact™) (6" - oM y
3 !
| = st (0" + s™) L
| 7
' »
1
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which approximates the unsplit scheme (12) to O (Atz). Since the
intermediate steps are also consistent approximations for Eq. (12), physical
boundary conditions can be used for ¢* and ¢**. Finally, since the L; are
homogeneous operators, it follows from Eqs. (l4a-c) that steady solutions

have the property that ¢0*l = gk = ¢gax = ¢0 and satisfy
P +s"=0 (16)

The steady solution thus depends only on the spatial difference approximation

used for (16), and does not depend on the solution algorithm itself.
STUDIES ON ACCURACY AND CONVERGENCE RATE

In practical high Reynolds number calculations using the split LBI
scheme (l4a-c), artificial dissipation terms are added to the central spatial
difference approximations for coanvective terms to control numerical
oscillations, stabilize the solution algorithm, and promote coavergence.
Although the added dissipation terms introduce a first-order spatial
truncation error in steady solutions, the magnitude of this error can be
controlled using adjustable dissipation parameters and is at worst comparable
to that associated with two-point "upwind" differeaces. The increase inm
accuracy derived from reduced values of added dissipation has been
demonstrated in two-dimensions by Shamroth, McDonald and Briley [15] in
computations of viscous transonic flow past cascades of airfoils.
Unfortunately, instability has been encountered in previous three-dimensional
flow calculations when only small amounts of dissipation are used. This is
not surprising since the Douglas-Gunn ADI (or delta-form approximate
factored) scheme applied to a simple scalar convection equation with periodic
boundary conditions is known to lose its unconditional stability in three
dimensions. This three-dimensional convective instability has been pointed
out by Warming and Beam [16], Dwoyer and Thames [17] and others. In the
present section, the behavior of the ADI scheme (l4a-c) applied to scalar
convection in three dimensions 1s considered further, and a new form for the

artificial dissipation terms 1s examined,
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Stability Considerations

As a model problem, the following three-dimensional scalar coavection

equation

20, (20, 26, 26).
at tu (ax + 3y + 3z 0 (17)
(constant u) is approximated on a unit cube with an equally spaced grid such
that L
3
xj = jAx Yy = kdy z, = 2z ; j,k,2=0,1,...N (18)
4
. 1 . m *
and with Ax = Ay = Az = h = N°°., The notation ¢j K. & denotes K
¢(Xj, Yks zg, t"), and one or more of these indices will often be
omitted for simplicity. Equation (17) is approximated by the following ADI ]
scheme analogous to (léa-c): o
1-8At D) A¢ = At (D_+D_+0D) ¢" :
(1 -85t D) a6 =4t (D +D +D) ¢ (19a) 1
*k * ]
(1 - BAt D) &b = 49 (19b)
y °
4
*k }
(1 - BAt Dz) A = A¢ (19¢)
where A¢ = ¢“+1 - ¢% and At = t"*l - ¢n,  central spatial differences - A
- are used, so that the spatial difference operators appearing in (19a-c) are T
s given by
Dy = (u/2h) (o547 = 95 y) (20) ]
e .
with analogous expressions for Dy and D.
J
*;
'. ]
9 o
F , .
3
- |
- N
s . A
P . UL U S S AT SO S . et a2 . Y L. I S U AR U PN ADIE DI, § A




T

To examine the stability of (19a-c) using the von Neumaan method, a

discrete Fourier-component solution of the form

_ _ 1w, x, + w,y, + w,z
O] L @ =@ e T3 TR (21)

is substituted into (19a-c) after eliminating the intermediate solutions A¢*
and A¢**, and the amplification factor ¢ (At, w) = ¢"*l/¢0 is determined.
Here, @ denotes the vector of frequencies (w), w2, w3), and i2= -1. The

algorithm is stable for a given time step if for all frequencies w present.
v e <1 (22)

To cover all possible frequencies, the algorithm must be stable for arbitrary

@ in the range

= /h 2w ,0,,0, < T/h (23)
and for these conditions, it has been found that the algorithm (19) is
uncoanditionally unstable. However, this particular stability analysis
applies rigorously only for an infinite domain with periodic initial
conditions, and does not account for the influence of nonperiodic boundary
conditions on a finite domain.

In the preseat investigation, the computation of steady solutions of the
Navier-Scokes equations is of primary interest, and this invariably leads to
the specification of nonperiodic boundary conditions in one or more
directions. In addressing steady solutions of the scalar convection
equation (17), it is natural to specify function values at inflow boundaries
and to employ some form of extrapolation or one-sided differencing at outflow
boundaries. Accordingly, the behavior of the algorithm is ianvestigated for

u > 0 and with the (implicit) boundary conditions
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x =
¢n+1 - ¢b at ly=0
z=0 (24a)
62¢n+1 =0 at x=1
x
(24b)
2 n+l
§ =0 at =1
y? Y (26¢)
2™ -0 et z=1 (244)
where ¢p denotes prescribed boundary values and where
620 = b, - 20, + ¢
x §+1 3 j-1 (25)

with analogous definitions for 53 and 55. The extrapolation outflow
condition is equivalent to replacing the central difference formula for the
direction normal to the outflow boundary by two-point, one-sided,
differences at points adjacent to the outflow boundary.

The stability of the algorithm (19) subject to the implicit boundary
conditions (24) was tested in numerical experiments using B = 1.0 and
differeat choices of At, h, and initial conditions. By chosing ¢, = 0 on
the inflow boundaries, the exact solution of the steady difference equations
is ¢ = 0, and consequently, the value of ¢?

also represents the error
’k’z

e? k.2 from the steady solution. The stability and degree of convergence was
L ]

assessed by observing the behavior of e" with increasing n. The L2 norm of

the error at interior grid points

N-1 2

n = n (26)
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was monitored as an indicator of both stability and rate of convergence to
the steady solution.

In each of the cases tested, the algorithm (19) with boundary conditions
(24) and with B = 1.0 was found to be stable for sufficiently small Courant
number C = uAt/h, in contrast to the unconditional instability indicated by
the Fourier analysis with frequencies given by (23). For example, Fig. 2
shows the computed error behavior for 50 steps using C = 0.8 and the

(discontinuous) initial condition

é = G(x) G(y) G(z) (27a)
2a for 0 <a<0.5
G(a) =
(27b)
1-2a for 0.5 <ac<1

The results in Fig. 2 indicate a stable calculation with good error reduction
for both N = 10 and N = 50. In another example, the amplification factor for
C =1.02 and N = 10 has a theoretical value of 1.00484 (unstable) for the
frequency w = (-%, -2m, 5w). Using C = 1.02, N = 10 and the initial
condition

¢ = G(-mx) G(-2my) G(57z)

G(a) = sin(a) + cos(a)

(27¢)
(274)
which contains only this single frequency and does not satisfy the boundary
conditions, the Lz error was reduced to less than 10'6 its initial value in
100 iterations. Had the theoreteical amplification factor of 1.00484 been
accurate for these boundary conditions, this error would have increased by
62% in 100 iterations. The discrepancy between the instability predicted by
the (periodic) Fourier analysis and the empirically observed stability is
attributed to the non-periodic boundary conditions (24). Since these
boundary conditions are treated implicitly, they influence the solution
simultaneously at all grid points during each time step.

A heuristic treatment of non-periodic boundary conditions within the
von Neuman approach can be accomplished by taking the region
(0 < x, y, z< 1) to be a half interval for each coordinate, with periodic
extension of the (nonperiodic) solution into the full interval
(-1 < x, y, z, < 1). At interior grid points (1 < j, k, £ < N-1), the error

€j,k,t from the steady solution can be expressed as a finite Fourier series

12
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containing only sine terms (odd extension), with frequencies given by

w) = oy m = 1,2,...N-1 (28a)
w, = m,w m, = 1,2,...N-1 (28b)

- = - (28C)
wy = M m, 1,2,...N-1

This representation correctly satisfies the condition of zero error at inflow
boundaries, but incorrectly assumes zero error at outflow boundaries. The
amplification factor Z(At, w) for the restricted range of frequencies (28)
provides a useful estimate of the observed stability, although it is
heuristic in its approach to the non-periodic boundary conditions. A
numerical computation for the frequency range (28) with N = 10 indicates that
the maximum 'C‘ numbers for which w) = wy) = w3 = w, and therefore it is

sufficient to consider the behavior of Z(At, w) for
0 <wh < (29)
For B = ], this leads to the following stability condition (See Appendix A)
C = ust/h < /3/2 (30)

The stability of the algorithm (19) with boundary conditions (24) was

tested in numerical experiments for N = 10 with initial conditions given by

N-1

¢ = E sin(jnmx) sin(kmy) sin(&nz) (31)
j,k,2=1

which includes contributions of unit amplitude from all frequeacies in (28).

The quantity

Il e™ /1 el (32)
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is taken as an empirical measure of the maximum amplification factor ¥ for
the purpose of assessing stability. Computed values of ¢ after 30 iterations
are shown in Fig. 3, along with theoretical curves for both the full range of

frequencies (23) and for positive frequencies in the range

0 2wy, 6y, Wy < n/h (33)

which led to the estimate (30) for stability. The theoretical curves were
obtained numerically using a sampling increment of 7/10h for each frequency.
For the conditions of these test calculations, the stability condition (30)
provides a useful and somewhat conservative estimate of the observed limit of
stability. Although the present results provide only a limited model for the
Navier-Stokes equations, the stability and rapid convergence rates obtained
here with proper time step selection are very encouraging. It is later
demonstrated here that rapid convergence can also be obtained for the
three~dimensional Navier-Stokes equations with small values of artificial

dissipation.

Second-Order Artificial Dissipation

One method of adding dissipation is equivalent to a replacement of the
convective derivative operator for each coordinate direction by a modified

operator, as follows:

ogdeuyd oo lulx 9_27 (34)
ax
with analogous replacements for vd( )/3y and wd( )/3z. When three-point
central differences are used on a uniform grid, the resulting approximation
is equivalent to the two-point upwind difference scheme when o = 1. This
latter scheme has first-order accuracy and is especially inaccurate when the
velocity is not aligned with the computational grid. Alternatives to this
upwind scheme have received considerable attention (see, for example,
Raithby (18], Baliga and Patankar [19], and Brooks and Hughes [20]). A very
simple but effective method of improving the accuracy of the upwind scheme is
to express the scheme in terms of central differences and an added
dissipation as in (34) and then reduce the dissipation parameter o. For

sufficiently small values of o, this method obviously approaches the accuracy
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e of the second-order central difference scheme. Dissipation of the form given
S in (34) will be referred to here as 'upwind' dissipation.

:r_. When the velocity is not aligned with the coordinate mesh, the accuracy
for a given value of 0 can be improved by adopting a differeat form for the
- dissipation terms, which acts to smooth convected quantities oaly in the
direction along streamlines. This form of dissiaption is used in the
streamline-upwind method of Brooks and Hughes [20] and is also present in the

tensor viscosity method of Dukowicz and Ramshaw [15]. Dissipation of this

Bt dnd A

type will be referred to here as 'streamwise' dissipation, and can be

illustrated as follows:

ko,

If s denotes distance along a streamline, and if s is the unit vector in

the direction of the streamline, then the velocity vector U can be expressed

as U = qg where q2 =U-. ﬁ, and the convective operator can be expressed as

— 3
U-V =473 (35) i
where .j
L
3 .3 1
35 = 8° v (36) -

Streamwise dissipation can be added by replacing the convective operator by a

modified operator analogous to (34) as follows:

2
UrV*a5-972 2 ( .
s .
b
where E
3
(qu)2 = (u Ax)2 + (v Ay)2 + (w Az)2 (38)
In three dimensions and for constant velocity, the streamwise dissipation E
. ® term has the form 71
b :
E..‘ “
o
F., -
-
. 15
b.
i
b

3
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-0 =— [u 7 +v. —3 + w — + Juv 33y + 2uw %32 + 2vw ay.az](39)
ax dy 9z

The above form is equivalent to upwind dissipation only in one dimension

(u#? 0, v=w=0) or if the mixed-derivative terms are omitted. Ia the
numerical algorithm, the mixed derivative terms are evaluated explicitly.
Warming and Beam [22] have shown for a three-dimensional scalar diffusion
equation that the explicit treatment of mixed-derivative terms does not upset
the unconditional stability of the ADI scheme (19) with B = 1.

The effect of upwind and streamwise dissipation on accuracy was examined
for a three-dimensional test problem suggested by Abarbanel, Dwoyer and
Gottlieb [23]. Here, the convection equation (17) is solved in the unit cube
with equal mesh increments and for N = 10. An exact steady solution ¢ of

equation (17) for these conditions is given by
® = cos [2n(x-y)] + cos [2n(y-z)]) + cos [2m(x-2)] (40)

In this test problem, the velocity vector is directed diagonally to each
incremental mesh cube. In the present calculations, the correct boundary
conditions for ¢ were prescribed from this known exact solution (¢ = ¢ at
inflow; 62¢ = 620 at outflow). It was noted that the central difference

scheme without dissipation (0 = 0) reproduced the exact solution ¢ at

all grid points. Consequently, the error ¢ - ¢ in the present calculations
is entirely due to the added dissipation. The maximum error

'¢ - Ol/(omax - ®nin) at interior points is shown in Fig. 4 as a function

of the dissipation parameter o for both the upwind (34) and streamwise (39)
forms of dissipation. Although the coarse mesh used (N = 10) causes
relatively large errors at large values of 0, the streamwise dissipation (39)
provides a considerable improvement in accuracy for a given value of a.

Other solutions were computed in which resolution was improved by using the
same coarse grid (N = 10) but for computational domains smaller than the unit
cube. These results confirm that the increased accuracy of streamwise
dissipation over upwind dissipation for fixed ¢ is maintained when the grid

resolution is increased.
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COMPUTED RESULTS FOR A LAMINAR HORSESHOE VORTEX FLOW

. .. .
. . L.

Flow Conditions

Solutions are presented here for laminar flow at zero incidence past an 1
elliptical leading edge geometry mounted between parallel flat plate
endwalls. The purpose of these calculations was to determine whether the »
improved understanding of stability and accuracy acquired in the present
model problem studies could be exploited to allow computation of accurate

solutions of the three-dimensional Navier-Stokes equations using the split

LBI scheme with small amounts of artificial dissipation. The leading-edge ’
geometry for the present calculations is the same as that considered by
McMahon, Hubbartt and Kubendran [4] for turbulent flow conditions. A laminar
flow case was chosen here to allow an accurate assessment of the numerical
method, which is not clouded by extraneous factors associated with turbulence »
modelling. The computation of turbulent flow cases will be undertaken in a
future investigation.
The flow geometry (Fig. 1) consists of a strut of constant thickness W
having an elliptical leading edge with 1.5:1 ratio of major to minor axis. ’
The strut is mounted normal to parallel flat plate endwalls whose separation
distance is 5.0W, and whose leading edges are located a distance 6.0W

upstream of the leading edge of the strut. The length L of the strut within

the computational domain is 2.5W. The flow considered has a Reynolds number ’
Re = 200 (based on L) and Mach number M, = 0.1, each based on upstream flow

conditions. S

Boundary Conditions !—1
]

1 Since the computational domain is chosen to be a region in the immediate
vicinity of the leading-edge/corner flow geometry (cf. Fig. 1) embedded

‘ within a larger overall flow system, inflow and outflow boundary conditions

.

which adequately model the interface between the computed flow and the

P

2 remainder of the flow system are required. The inflow/outflow conditions

Y

used are derived from an assumed flow structure and are chosen to provide

' inflow with prescribed stagnation pressure (and stagnation enthalpy) in an ’

vy

inviscid core region and with a given axial velocity profile shape in the

17 1
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endwall boundary layer, and to provide outflow with a prescribed distribution
of static pressure in the cross section. This approach to inflow/outflow
boundary conditions has been discussed previously in [1-2] and is only
summarized here.

First, the boundary layer thickness 8(x)]) on the endwall flat plate is
approximated by its distribution from the Blasius flat plate solution. At
the inflow boundary, a '"two-layer" boundary condition is employed such that
stagnation pressure p, is fixed at the free stream reference value in the
core flow region (y3 > 8) and an axial velocity profile shape
u) fue = f(y3/6) is fixed within the boundary layer region (y3 £ 8). Here,
u, is the local edge velocity which varies with time and is adjusted after
each time step to the value consistent with py and the local edge static
pressure, which is determined as part of the solution. The remaining inflow
conditions are up = 32u3/8n2 = sz/an2 = 0, where n denotes the normal
computational coordinate, yl. For outflow conditions, a constant static
pressure is imposed, and second derivatives of each velocity component are
set to zero. At no-slip surfaces, each velocity compoment uj is set to
zero, and the remaining condition applied to these surfaces is that the
derivative of pressure in the direction normal to the surface is zero. This
c.adition approximates ihe normal momentum equation to order Re~! for viscous
flow at a no-slip surface. The final boundary to be considered is the plane
parallel to the endwall and in the free stream. This boundary is assumed to
be a plane of symmetry, so that the flow represented is that past the strut

mounted between parallel flat plates.

Computational Details

For constant stagnation enthalpy, the governing equations consist of
continuity (3) and three components of momentum (4). After eliminating
pressure using (8), these equations are solved using the split LBI
scheme (14), linearized with respect to the dependent variables
¢T = (p, uy, uz, u3). Central spatial differences are used on an equally
spaced grid for each transformed coordinate yj, and streamwise dissipation
terms analogous to (39) are added to these equations.

For each governing equation, the streamwise dissipation term can be

expressed as
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where s8) = Ul/Q are components of a unit vector, and where

ol - yfi Yy (42a)
2 _ Gk
Q" = U’V ij (42b)

Here, 0 is a dissipation parameter, ¥ is a scalar representing the
appropriate dependent variable (p for continuity and up for the kth

momentum equation), and k is 0 for continuity but otherwise 1.

The quantity V defined by

2
2 _ 3k (43)
v (fs") ij
where
-~ i 2
- rel s ) (44)

is a measure of the physical diffusion in the streamwise direction. The
artificial dissipation term (41) is omitted at points for which V is greater
than opkQ/2. 1In the present calculations, the value o = 0.1 was used for
the dissipation parameter. It should be recalled that for scalar convection
in one dimension, the value 0 = 1.0 is equivalent to two~point upwind
differencing, and thus the value o = 0.1 is relatively small.

Although a uniform grid was used for the transformed coordinates yj,
the grid used is highly nonuniform in physical coordinates x{, as shown in
Fig. 1, aad was chosen to provide resolution of several length scales known
to be present for this type of flow. Care was taken to provide resolution of
the boundary layers on the strut and endwall surfaces, of the shear layer
near the leading-edge stagnation line, and of the corner flow region very

near the endwall/leading-edge intersection. Two computational grids,
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consisting of 15 and 29 equally spaced points for each transformed coordinate
direction, were used to compute solutions which were otherwise identical.
For the finer grid, the mesh spacings adjaceant to the endwall and strut
surfaces were 0.0005W and 0.0085W, respectively.

A pseudo-time dependent iteration procedure was employed in which the
square matrix A in the LBI scheme (14) is replaced by a modified matrix
A « AB, where B is a diagonal conditioning matrix. This technique was
employed by Briley, McDonald and Shamroth [6] to improve the convergence rate
of this algorithm when applied to low Mach number flows. In the present
calculations, a diagonal matrix B whose diagonal elements are
(I/YMrz, 1, 1, 1) was used. In addition, a spatially varying time step was
used to avoid instability analogous to that encountered for the
three-dimensional scalar convection equation, and to improve the convergence
rate. Several procedures for time step selection for the Navier-Stokes
equations are presently under investigation, and the present results should
be taken ony as a demonstration that this techmnique can provide a good rate
of counvergence to the steady solution. A more detailed account of variuos

techniques for time step selection will be given in a forthcoming paper.

Computed Results

Before proceeding to a discussion of the horseshoe vortex flow, an
indication is given of the degree and rate of convergence obtained for these
three-dimensional calculations, and of the effect of halving the mesh on the
computed solutions. The convergence rate for each of the two grids is shown
in Fig. 5, where the maximum residual in the field is normalized by its value
at the start of the calculation. A very good rate of convergence was
obtained for a relatively small value of dissipation parameter (o = 0.1).
Reducing the normalized residuals to 102 gave convergence to within a
tolerance not distinguishable in the plots of computed flow variables given
here, and this required about 30 to 60 iterations, respectively, for the
(15 x 15 x 15) and (29 x 29 x29) grids,

The effect of halving the mesh spacing on the computed distributions of
flow variables at a representative location is shown in Fig. 6. The

distributions of each velocity component and static pressure coefficient

Cp = 2(p - 1/YMe2) iq the x3 direction are given for a line normal to the
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endwall and within the plane of symmetry upstream of the strut leading edge,
located a distance 0.22W upstream of the leading edge. This location has the
peak value of reversed flow in the uj velocity component. The comparison in
Fig. 6 is representative of that found throughout the flow field. The
solution does not change significantly when the mesh is halved, and this is
an indication that the solutions are accurate and that the flow behavior is
adequately resolved using these grids. The sensitivity of the coarse mesh
solution to the location of the outflow boundary was also tested by adding
grid points to move the outflow boundary downstream a distance 6.1W, and this
had no significant affect on the solution.

Computed results for the (29 x 29 x 29) grid are shown in a series of
plots in Figs. 7, 8 and 9a-f. 1In Fig. 7. velocity vector plots in the plane
of grid points adjacent to the no-slip endwall surface are coantrasted with
corresponding results from the symmetry plane midway between the endwalls.
The vector magnitudes are renormalized for each plot and thus indicate only
flow direction and relative magnitude within the plot. A reversed flow
region within the horseshoe vortex is clearly visible near the endwall. The
reversed flow region includes two saddle-point flow separations associated
with the horseshoe vortex flow structure. One of the saddle points is very
close to the leading edge and is not clearly visible in Fig. 7.

The computed flow behavior in the corner region near the intersection of
the strut and endwall is shown in Figs. 8-9. The flow is shown in planes
normal to the strut surface and intersecting the endwall, as indicated in
Fig. 8. Vector plots of velocity within these planes and contour plots of
normal velocity, static pressure coefficient Cp and total pressure
coefficient Cp, are shown in Figs. 9a-f. The cross sections have a width
of 2W and height of 1.25W. The horseshoe vortex formation in the stagnation
symmetry plane (plane 1) can be seen in Fig. 9a. There is a strong downward
velocity toward the endwall 1n the region near the leading edge (behind the
saddle-point separation), with maximum downward velocity about 45 per ceat of
the free stream reference velocity. The maximum reversed flow velocity (uy)
is about 7 per cent of the reference velocity (see also Fig. 6). The
horseshoe vortex continues its development at downstream locations and moves
outward away from the corner region and into the free stream. The contours
of velocity normal to the cross sectional planes give an indication of the

shear layer development on the strut and endwall surfaces and also show the
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distortion of the shear layers in the corner region due to the horseshoe
vortex. The static pressure field is highly three-dimensional, with
significant spanwise gradients along the strut surface and low pressure near
the strut/endwall intersection. Although no other analytical results or
experimental measurements of the three-dimensional horseshoe vortex flow are
available for comparison, the present computed results are consistent with

flow visualization studies of related leading edge vortex flows.

CONCLUDING REMARKS

Significant progress has been made in improving the
accuracy/convergence-rate properties of the present numerical method for the
three~-dimensional Navier-Stokes equations. It has been demonstrated for the
laminar flow considered that an accurate (grid insensitive) steady solution
can be computed and that good convergence rates can be obtained in three
dimensions, using only small amounts of artificial dissipation. These
calcultions were performed using locally-refined nonuniform grids of the type
needed to define the multiple length scales preseant in high Reynolds number
viscous flows. A future study will address the computation of turbulent flow
cases with resolution of the viscous sublayer region. Based on our recent
experience with a vectorized version of this code on a CRAY-l computer, it
should soon be possible to compute solutions fcr a 30 x 30 x 30 grid (27,000

points) in about 10 minutes of run time.
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Under the condition that the frequencies for each coordinate direction

are equal (w) =wp = w3 = w), the amplification factor for the algorithm given

in (19a-c) can be written in the form

a, + i Bl

a, + i 32

where
a, =a, =1~ 3 (CA)2
1 2
K}
B, = - 3CA + (ca)
By = 62 + 3CA/B
and where

C = uAt/h

A = Bsin(wh)

Because a] = a2, neutral stability occurs when B8] =

CA = [3(28-1)/28]%/2

(A.1)

(A.2a)

(A.2b)

(A.2¢)

(A.3)

(A.4)

B2, which yields

(A.5)

The maximum value of A occurs for wh = 7/2, and this gives the following

stability condition:

l; Farey

D

'

¢ < 87! (3¢28-1) /2812 (A.6) l

]

i

L

The special case B = 1 gives C < 73/2. X
»
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